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We present a dynamic model of the evolution of communication in a Lewis signaling
game while systematically varying the degree of common interest between sender and
receiver.We show that the level of common interest between sender and receiver is strongly
predictive of the amount of information transferred between them. We also discuss a set of
rare but interesting cases inwhich common interest is almost entirely absent, yet substantial
information transfer persists in a “cheap talk” regime, and offer a diagnosis of how thismay
arise.

1. Introduction. An important recent development in the naturalistic study
of communication is the systematic investigation of simple, computation-
ally tractable models. Such models are severely idealized in many respects,
but there are invaluable gains in the explicitness and rigor of the results ob-
tained by working on them, alongside the familiar approach of engaging in
informal discussion of more realistic examples. Some areas of concern to
philosophers that this research program has already shed light on are the
difference between assertions (indicatives) and directives (imperatives) (Hut-
tegger 2007; Zollman 2011), signaling in social dilemmas (Wagner 2015), de-
ception (Zollman, Bergstrom, and Huttegger 2013; Martínez 2015), and vague-
ness (O’Connor 2014).
Formulating the problem of communication in a way that makes it ame-

nable to a rigorous treatment of this kind is in itself a major philosophical
contribution. Most of the work cited above is based on Lewis’s (1969/2002)
model of signaling. In this model a sender (or, for Lewis, ‘communicator’)
sends messages to a receiver (or, for Lewis, an ‘audience’), and both parties
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receive a payoff that depends on the state the world is in when the message is
sent and the act performed by the receiver in response. (In this article we
focus on so-called cheap talk games, in which payoffs do not depend on the
type of message sent.) The message sent by the sender on a given occasion is
decided by a sender’s strategy: a function that takes states (i.e., members of a
set S of mutually exclusive and jointly exhaustive ways the world can be) to
a probability distribution over the set M of possible messages. The act per-
formed by the receiver is decided by a receiver’s strategy: a function that
takes each member of M to a probability distribution over the set A of pos-
sible acts. A signaling game is individuated by two payoff matrices that give
the payoffs to sender and receiver for each combination of state and act,
together with a distribution that gives the unconditional probabilities of
states. A sender-receiver configuration is individuated by a signaling game,
a sender’s strategy and a receiver’s strategy.
So, for example, a certain signaling game, SG, is univocally described by

giving, first, the payoff matrices in table 1 and, second, the distribution for S
(1/3, 1/3, 1/3)—that is, by stating that the three states the world can be in are
equiprobable. And, for example, a sender-receiver configuration is individ-
uated by SG together with the sender’s and receiver’s strategies in tables 2
and 3, respectively.
That is, the sender will always sendM1 in S1, andM2 in S2, and will throw

a biased coin in S3, so as to sendM1 with a probability of two-thirds andM3

with a probability of one-third. The receiver’s strategy can be read analogously.
In Lewis’s original discussion, the sender and receiver are rational agents

with complex intentional profiles, and emphasis is put on sender-receiver
configurations that achieve various kinds of equilibrium states. In Skyrms’s
(1996, 2010) groundbreaking reinterpretation of the Lewisian framework, in
contrast, what counts is not the players’s rational appreciation of the payoff
situation but the way in which various selection processes (evolution, rein-
forcement learning, and imitation) can shape the strategy of agents, whomay
be individually very unintelligent, as a result of those strategies being more
or less successful in securing payoffs.

TABLE 1. TWO PAYOFF MATRICES

S1 S2 S3

A1 5, 0 2, 4 0, 5
A2 6, 5 0, 0 1, 6
A3 0, 6 6, 6 5, 3

Note.—Number pairs in each cell represent, respectively, the
sender’s and the receiver’s payoffs for a given action (A) per-
formed by the receiver in a given state of the world (S). The payoff
matrix for the sender can be reconstructed by taking the first
member of the pair of numbers in each cell; that for the receiver, by
taking the second member.
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In the present article, we apply these methods to some long-standing ques-
tions about the relationship between communication and common interest.
Many theorists, both in philosophy and other fields, have seen communication
as a fundamentally cooperative affair, an interaction between agents whose
interests are at least fairlywell aligned.This has been a common themeacross a
range of literatures, including speech act theory (Grice 1957), Millikan’s nat-
uralistic theory of intentionality (1984), and a range of recent work on the
evolution of human behavior (Tomasello 2008; Sterelny 2012). Lewis him-
self assumed that common interest “predominates” in his original model
(1969/2002, 10). In the context of the Lewis model, there is common interest
if sender and receiver tend to want the same acts performed in a given state of
theworld. Interests are divergent when the two agents want different pairings
of actions and states. An intuition thatmany have shared is that if the interests
of sender and receiver are too divergent, then a receiverwill be unwise to trust
anything a sender says. If receivers stop listening, there is no point in talking.
So divergence of interests should eventually make communication collapse.
This intuition is fundamentally a dynamic one; it predicts that when sender
and receiver diverge enough in interests, a particular outcome should occur.
How, then, do these ideas fare when cast in a formal model of behavioral
change, using a dynamic version of the Lewis model? What role does com-
mon interest have in producing and maintaining communicative interac-
tions? Those are the themes of this article.
Earlier work has already shed some light on this question. Skyrms (2010)

considered a few cases of imperfect alignment of interests in a Lewis sig-
naling model and showed that communication could be an equilibrium state
in these cases. Skyrms discussed just a handful of cases, though. In their
classic model from economics, Crawford and Sobel (1982) give a more
general and rigorous treatment of the consequences of divergent interests

TABLE 2. A SENDER’S STRATEGY

S1 S2 S3

M1 1 0 2/3
M2 0 1 0
M3 0 0 1/3

TABLE 3. A RECEIVER’S STRATEGY

M1 M2 M3

A1 1 1/2 0
A2 0 1/2 0
A3 0 0 1
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for a static model that has both similarities and differences from the Lewis
setup. They imagined a situation in which the sender wants to exaggerate
her quality (or another relevantly similar state of the world), to some degree,
and the receiver wants not to be taken in by the exaggeration. Crawford and
Sobel found that as interests diverge more and more, fewer distinct signals
can be used at equilibrium, until signaling collapses into a “pooling” outcome
in which the sender makes no distinction between different states of the
world. This result is in accordance with the intuition, outlined above, that
when interests diverge too far, senders will say nothing worth listening to.
In both economics and biology, a rich set of models has been developed

that explore the consequences of differential signal cost in enforcing honesty
when interests diverge. When signaling itself is a costly action, there are sit-
uations in which it is plausible that only honest senders can afford to send a
signal of a given kind. The first model to explore this idea was offered in
economics by Spence (1973) and applied to the case of job markets. Zahavi,
independently, soon after applied the sameprinciple to biology (1975),where
the choice of mates by females replaced the choice of employees (see also
Grafen 1990a, 1990b; Maynard-Smith and Harper 2003; Zollman et al.
2013). Since then, a wide range of models of this kind have been developed.
In somemodels, the costs needonly be operativewhen the population is not at
equilibrium (Lachmann, Szamado, and Bergstrom 2001).
The detailed development of costly signaling models may have fostered

the impression that communication is very difficult to maintain in situations
inwhich signal costs are entirely absent and interests do not align. Somewell-
known games do give this impression. However, this impression is some-
what misleading. In earlier work of our own (Godfrey-Smith and Martínez
2013), we used computerized search methods to assess the value of some
exact measures of common interest as predictors of the viability of com-
munication in a cheap talk Lewis model. By looking far outside the set of
familiar games, we found that communication could persist in some situa-
tions characterized by extremely low levels of common interest. We also
found a general predictive relationship between our measures of common
interest and the viability of communication. This earlier work, however,
focused entirely on the existence of Nash equilibria and contained no
dynamical models.1 It did not investigate how accessible to evolution equi-
libria were.2 The current article considers the relationship between com-
munication and common interest using dynamic methods. We ask how dif-

1. In this context, a Nash equilibrium is a sender-receiver configuration in which neither
the sender nor the receiver can increase her expected payoff by unilaterally changing her
strategy.

2. Wagner (2012), discussed below, and Wagner (2015) also use dynamic methods to
study the emergence of communication in situations of significant conflict of interest.
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ferent degrees of common interest affect the evolutionary trajectories of popu-
lations of senders and receivers interacting in accordance with a Lewis model.
Section 2 describes the model used: a family of Lewis sender-receiver

games, embedded in an evolutionary model on which quantitative measures
of communication and common interest are defined. Section 3 discusses the
main results regarding the relation between the degree of common interest
present in a game and the maintenance of communication, while section 4
takes a closer look at the case of very low common interest. Section 5
assesses the significance of our results and offers conclusions.

2. The Model. Our model uses a Lewis sender-receiver game of the kind
characterized in the introduction and then embeds this game in an evolu-
tionary model in which change is described with the replicator dynamics
(Hofbauer and Sigmund 1998, chap. 7; Sandholm 2010, 126). Specifically,
consider a signaling game, a set of possible sender’s pure strategies
S ¼ fj1; : : : ; jqg, and a set of possible receiver’s pure strategies < ¼
fr1; : : : ; rrg. Instead of a single sender and a single receiver, we have a
population of senders and another of receivers. The sender population can
be characterized in terms of q behavioral types, each one of them im-
plementing a different strategy in S, and their associated frequencies. The
receiver population is, similarly, characterized by r types and their associ-
ated frequencies. The frequencies of the different sender and receiver types
are X ¼ fx1; : : : ; xqg and Y ¼ fy1; : : : ; yrg.
Members of the sender population are assumed to interact with members

of the receiver population. The average payoff for the sender type that
follows strategy ji when dealing with a receiver following strategy rj is p

j
ij.

The receiver in that encounter gains pr
ji. These payoffs are easily calculated

from the payoff matrices, the players’ strategies, and the unconditional
probabilities of states.
The average payoff for a sender type is the weighted average of the

payoffs this type gets with each type present in the receiver population:
pj
i ¼

P
j p

j
ij yj. Mutatis mutandis for the receiver: pr

i ¼
P

j p
r
ij xj.

Finally, the average payoff for the entire sender population is the
weighted average of the averages per type: pj ¼ P

i xip
j
i . Mutatis mutandis

for the receiver: pr ¼ P
i yip

r
i .

If sender and receiver populations follow the two-population replicator
dynamics, the rate of change over time of the frequency of each type is
given by the following differential equations:

ẋi ¼ xi � ðpj
i 2 pjÞ: ð1Þ

ẏi ¼ yi � ðpr
i 2 prÞ: ð2Þ
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We have now embedded a Lewis model within an evolutionary framework.
Our next topic is the characterization of common interest between sender
and receiver.
As in Godfrey-Smith and Martínez (2013), we use C as a measure of

common interest between sender and receiver. Parameter C formalizes the
following idea: sender and receiver see perfectly eye to eye insofar as the
outcome they most prefer coincides in every state, their second preference
coincides too, and so on down to the least preferred outcome. Their interests
diverge gradually as these preference rankings diverge.
Parameter C is calculated as follows. For each state (i.e., each column in

the sender and receiver payoff matrices), we calculate the Kendall tau
distance (the number of pairwise disagreements in the ranking of acts)
between sender and receiver payoffs. For example, in the payoff matrix in
table 1, the Kendall tau distance for state S1, tS1 , is 2: sender and receiver
disagree about which member is preferable in the pairs of acts ðA1, A3Þ and
ðA2, A3Þ but agree that A2 is preferable to A1. Distance tS2 is 0: they agree
completely on the preference ranking for acts in that state. Distance tS3 is
also 2. An average distance is then calculated, using the unconditional proba-
bilities of states as weights:

t ¼
X
i

PrðSiÞtSi :

Finally, t is rescaled so as to have 0 as no common interest and 1 as perfect
common interest. For n states this yields

C ¼ 12
2t

nðn2 1Þ :

Parameter C is a very coarse-grained measure of common interest.3 In games
with three equiprobable states and three acts, there are only 10 possible values
of C. However, as we will see, it is strongly predictive of the possibility of
communication.
Nextwe consider how to describe communication itself in such a setup.We

say that a sender-receiver configuration contains informative signaling when
the signals sent carry some information about the state of the world, and the
acts performed carry information about the signal sent. These relationships
aremeasured asmutual information. This is awidely used concept, originally
due to Shannon (see Shannon and Weaver 1949), that measures the amount

3. For example, it does not give any special role or weighting to actions that yield the
best payoff for sender and receiver. There is some reason to think that a match in these
actions, for a given state, should be particularly important in maintaining communi-
cation. However, when we experimented with a weighting of this kind, the result was a
less predictively useful measure than C.
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of association between two variables, the extent to which the value of one
predicts the value of the other. Mutual information is symmetrical, and its
value ranges between a minimum of 0 (no association) and a maximum
dependent on the amount of entropy (uncertainty) in the two variables. It is
calculated as follows.
The (unconditional) entropy of states is given by

HðSÞ ¼ 2
X
i

PrðSiÞlog2ðPrðSiÞÞ:

And the entropy of states conditional on acts is given by

HðSjAÞ ¼
X
i

PrðAiÞHðSjA ¼ AiÞ;

where PrðSiÞ is the unconditional probability of state Si. Finally, the mutual
information between states and acts is given by

IðS;AÞ ¼ HðSÞ2 HðSjAÞ:
In games with three states, three messages, and three acts, if IðS;AÞ ¼
log23, the sender’s strategy is a bijection between S and M, and the re-
ceiver’s strategy a bijection between M and A. We will refer to configura-
tions in which both sender’s and receiver’s strategies have this property as
signaling systems—we take this notion from Lewis (1969/2002), but our
use differs from his in that we are placing no constraints on the payoffs
received by sender and receiver, while for Lewis players engaging in a
signaling system always obtain maximum payoffs. If I(S; A) = 0, nothing
whatsoever can be said about the state of the world from the act the receiver
performs—this corresponds to the absence of communication.
Next we describe the relationships between the states of populations of

senders and receivers, on one hand, and the measure of communication
outlined above. As we have set up our model, at any given time a range of
different types may exist in each of the two populations—the sender pop-
ulation and receiver population. Thus, a great range of different commu-
nicative interactions is assumed to be taking place—there is not a single
sender-receiver configuration present, in the sense we introduced earlier.
However, we aim to give a general characterization of the sender-receiver
relationships that exist at each time. We do this in a way that has become
common in models of this kind; we “translate” the pair of population
structures that are present at a time into a single sender-receiver configu-
ration by averaging over the different individual-to-individual interactions
that are possible given the state of the two populations.4 For each state of the

4. Compare Zollman et al. (2013, 7). This can be done straightforwardly if, as in tables 2
and 3 above, strategies are rendered as matrices.
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world, there is a probability distribution over messages that is determined
by the state of the sender population. Thus, there is a population-wide
“sender’s strategy” instantiated for that state. Similarly, for each available
message, there is a probability distribution over acts that is determined by the
state of the receiver population, and hence a population-wide “receiver’s
strategy” instantiated for that message. The combination of these population-
wide strategies plus the unconditional probability of states determines the
mutual information between states and acts.

3. Results. Our main research question was how the presence of commu-
nication relates to common interest. We look into this question by generating
a large number of random signaling games at each level of common interest
and then recording how likely it is in these games that random starting points
evolve to a situation in which communication happens, depending on the
level of common interest. Specifically, we focus on cheap talk signaling
games with three equiprobable states, three messages, and three acts. There
are 10 possible values of C, our measure of common interest, for games of
this sort. These games are individuated by 18 numbers: the 18 values in a
payoff matrix of the form seen in table 1.
For each value ofC, we generated 1,500 collections of 18 random integers

between 0 and 99. Each one of these collections individuates a signaling
game.Apopulation of senders (the same applies to receivers) is characterized
in terms of the frequencies of the 27 types of pure strategists who may be
present. These pure strategies can be represented as follows, using the con-
vention introduced in tables 2 and 3 in the introduction:

1 1 1
0 0 0
0 0 0

0
@

1
A;

1 1 0
0 0 1
0 0 0

0
@

1
A; : : : ;

0 0 0
0 0 0
1 1 1

0
@

1
A:

For each of the 1,500 random games per value of C, we ran simulations
starting from 1,000 different randomly chosen states of the two populations
(the sender and receiver populations). This is equivalent to choosing 1,000
random ordered pairs of points in the 26-dimensional simplex. At t = 1,000,
the pair of resulting population states was “translated” into a sender-receiver
configuration, in the way described above, and the mutual information
between states and acts was recorded. When the sender-receiver configura-
tion at t = 1,000 showed nonzero mutual information between states and
acts, we scored that simulation as one in which communication evolves.
In total, then, 10 (values of C) times 1,500 (random games) times 1,000
(pairs of random starting frequencies) simulations were run (1.5 � 107 sim-
ulations).
We next note some implementation details. First, no effort was made to

check whether by t = 1,000 populations had settled into any specific kind of
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equilibrium or cyclic behavior, although casual inspection shows this to be
often the case. Similarly, we have not checked for the stability, in any formal
sense, of t = 1,000 states; we have not assessed the consequences of small
hypothetical deviations from these states.
Finally, to prevent rounding errors from affecting the results, we only

count as nonzero amounts of information above 1023 bits. It is possible,
if unlikely, that rounding errors still play a role in the final results: calcu-
lations are carried out using 64-bit floating-point numbers. In the computer
we used, this means that the minimum frequency for a population is around
2 � 102308, types that go below this frequency simply becoming extinct. In
the replicator dynamics it is impossible for a frequency to decline to exactly
zero, so it is in principle possible that this computational limitation in-
troduces a distortion: that is, it is in principle possible that types below the
2 � 102308 mark would have bounced back to nonnegligible frequencies.
But this number is so low that the empirical relevance of results that de-
pended on types bouncing back from such a frequency would be doubtful.
A coarse-grained summary of the results of these simulations is given in

figure 1. This figure shows, for each value of C, the overall proportion of
simulations in which communication evolved. So we here group together,
within each value of C, all the games with that value of C and all the initial
states for each game. We then find, as shown in figure 1, that C is very
predictive of this proportion: there are very few cases of the evolution of
communication when C = 0 (although there are some; see sec. 4 for dis-
cussion), while this is by far the most likely outcome when C = 1.5 The
dependence of communication evolution on C is monotonic and appears to
be smooth across the chart (although bear in mind that there are only 10
values of C, and curve fitting is therefore not entirely meaningful).
In previous work, as noted in the introduction, we carried out an analysis

of the prevalence of communicative Nash equilibria in samples of games with
different values of C. This work used the same criterion for an “information-

5. In our sample, there are 165 C = 1 games in which simulations never evolve to
communication. These are all of the games in the sample (and the only ones) in which one
and the same act is themost preferred in every state. That is, in these games, if, e.g., act 3 is
the most preferred for sender (and receiver: these are C = 1 games, so their preferences
always coincide) in state 1, then it is also the preferred act in states 2 and 3. This makes
communication useless: the receiver can ignore the sender’s signals and simply do the best
act no matter what. Godfrey-Smith and Martínez (2013) shows that the dependence of
communication on this kind of contingency of payoff is as systematic as its dependence on
the degree of common interest. However, Godfrey-Smith and Martínez (2013) erred in
giving too strong a specification of the cases in which C = 1 games fail to accommodate
communication; any C = 1 game in which the same act is best for every state will prevent
communication, even if the value of other acts varies across states. Apart from these
systematic failures of communication, there are manyC = 1 games in which a minority of
simulations do not reach communication, but most other simulations for these games do.
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using” outcome that we employ here, although in the earlier article this cri-
terion only characterized equilibrium states. Our dynamic analysis in this
article confirms the conclusions drawn about the predictive value of C in the
earlier work. In particular, the proportion of outcomes in which communica-
tion evolves, for each value ofC, in the dynamic analysis is strongly correlated
with the proportion of games, for each value ofC, that contain an information-
using Nash equilibrium as found in the earlier study. The Pearson correlation
coefficient between the two series of values is .9990 (with p < .001). Thus, the
results of the dynamicmodel of this article do appear to validate the findings of
the earlier static analysis of the role of C in maintaining communication.

4. Communication at Very Low Values of C. As figure 1 shows, in some
games with C = 0 we find a few starting points that evolve to situations in
which communication is sustained by t = 1,000. A value of C = 0 only
obtains when the preferences of sender and receiver are reversed every-
where. That is, the most preferred act for the sender is the act least preferred
by the receiver, and conversely, in every state. Remarkably, even in such a
situation some simulations (10,000 out of half a million runs, in our sam-

Figure 1. Proportion of simulations in which communication evolves, expressed as
a function of common interest.
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ple) can accommodate communication. But this feature of our results does
show some sensitivity to the dynamics chosen: when we ran the same sim-
ulations using the replicator-mutator dynamics, therewere no runs inwhich a
C = 0 game evolved to maintain communication at t = 1,000. (Details of this
analysis are given in the appendix.)
A further notable feature of the dynamic results is that no simulation in

our C = 0 sample evolved toward a Nash equilibrium in which information
was being exchanged (although in some C = 0 games an information-using
Nash equilibrium does exist.) This is evident from the fact that no such
simulation was approaching an information-exchanging state (Nash or not)
in which frequencies of behaviors had ceased to change by t = 1,000.
Instead, most of the C = 0 configurations at t = 1,000 in which informative
signaling is taking place belong to persisting cycles.6 As an example, fig-
ure 2 shows the evolution of mutual information corresponding to a sim-
ulation based on the game in table 4: very quickly, in a couple hundred
generations, the mutual information between states and acts enters a per-
sisting cycle between 0.67 and 0.69 bits.
Some otherC = 0 games did not give rise to cycles by t = 1,000 but instead

appeared to generate a chaotic dynamical regime. Results of this kind have
also been found in a dynamic model of a Lewis signaling game by Wagner
(2012).Wagner used a stronger criterion for complete conflict of interest than
C = 0 (he understood complete conflict of interest to exist only in constant
sumgames). Some of our simulations (such as the one corresponding tofig. 3
and table 5) often show communication at signaling-system levels. That is,
the very incompatible preference rankings of sender and receiver can still
sustain simulations in which the sender is, roughly half of the time, perfectly
informative about the state of theworld, and the receiver perfectlymindful of
this information.7

The signaling system that keeps recurring in the simulation corresponding
to figure 3 is described in tables 6 and 7: the sender is perfectly informative,
and the receiver exploits this to her benefit and the sender’s detriment—
although the receiver does not carry the exploitation to the fullest extent; see
below.
What is sustaining informative signaling at C = 0 in these two kinds of

cases (periodic orbits on the one hand, apparently chaotic orbits on the
other)? There appears to be a main pattern in all of them: given that sender’s

6. By “persisting cycle” we refer to a pattern in which the frequencies of types oscillate
in an apparently stable manner. We have not, however, assessed the stability of these
patterns beyond observations of dynamics up to t = 1,000, and no conclusions should
be drawn about nearby paths in the state space.

7. In the simulation presented in fig. 3, this behavior persists at least until t = 60,000.
We do not know whether communication collapses at some later point.
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and receiver’s preferences are exactly reversed, the receiver would generally
like to exploit any information in the messages sent by the sender—that is,
use it to act in a way beneficial to her but detrimental to the sender. But any
exploitation by the receiver will have to involve letting her behavior be
guided by themessages sent by the sender. This means the sender can exploit
her attempted exploitation, by remapping states to signals in a way beneficial
to her but detrimental to the receiver.
Godfrey-Smith (2013) describes one very simple kind of evolution that

obeys this pattern: in a C = 0 game, if a sequential best-response regime is in
place (the sender’s strategy at t is the best response to the receiver’s strategy
at t21, which, in turn, is the best response to the sender’s strategy at t22,
etc.) and the sender kicks off the process by sending fully informative sig-

Figure 2. A C = 0 game evolving to cyclic communicative behavior.

TABLE 4. A C = 0 GAME WITH PERSISTENTLY CYCLICAL

INFORMATION EXCHANGE

S1 S2 S3

A1 31, 7 0, 95 57, 26
A2 5, 71 99, 1 15, 62
A3 17, 66 62, 23 28, 48
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naling (i.e., by using a strategy that is a bijection between S andM), then at
any given time, the sender is mapping states to messages one-to-one, and
the receiver mapping messages to acts one-to-one. Every configuration is a
signaling system, but not as a result of good will: they are taking turns to
exploit each other.
The persisting cycles in our C = 0 sample also appear to conform to this

sequential exploitation pattern. Consider again the game in table 4. Figure 4
is a fine-grained representation of the evolution of sender and receiver
frequencies for the particular simulation that generated the results shown in
figure 2; figure 2 shows change in mutual information while figure 4 shows
change in the frequencies of the underlying behaviors.

Figure 3. One evolution of mutual information between states and acts for the game
presented in table 5.

TABLE 5. A C = 0 GAME WITH APPARENTLY CHAOTIC

ORBITS, IN WHICH INFORMATION IS OFTEN EXCHANGED

AT SIGNALING-SYSTEM LEVELS

S1 S2 S3

A1 61, 28 14, 82 6, 74
A2 11, 87 49, 58 7, 49
A3 22, 71 21, 80 90, 38
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In what follows, we use S[M N O] as an abbreviation of the pure sender
strategy consisting in sending (only) messageM in S1, message N in S2, and
message O in S3. And R[P Q T] stands for the pure receiver strategy that
consists of doing (only) act P in response toM1, actQ in response toM2, and
act T in response to M3.
In the cycle, represented in figure 4, the only two types with nonzero

frequencies in the receiver population are R[1 3 3] and R[2 3 3]. That is, the
receiver always responds to M2 and M3 with A3 and mixes A1 and A2 in
response to M1. The sender strategies with highest frequency are S[2 1 1]
and S[2 2 1]. That is, the population mostly contains strategies that always
sendM2 in S1 andM1 in S3, but the strategies differ in how they respond to S2,
with the result that there is a population-wide mixing of M1 and M2 in
response to that state. There is a small proportion of senders (below 10%)
doing S[2 3 1] and S[3 1 1].
The frequencies of types R[1 3 3] and R[2 3 3] in the receiver’s popu-

lation change at the same rate as the proportions of S[2 1 1] and S[2 2 1] in
the sender’s population, only with a lag of approximately 3 time units. Here
is what is going on: when the proportion ofM1 sent by the sender in S2 falls,
M1 becomes more informative about S3. In that case, the receiver wants to
respond toM1 with A2, which secures the highest payoff for the receiver in S3

(and is exploitative, insofar as the sender is then stuck with the lowest
payoff in S3). Consequently, the frequency of the R[2 3 3] type increases in
the receiver population. As this frequency increases, the strategy consisting
of sending M1 in S2 becomes more attractive for the sender (the pair S2/A2

has a very high payoff for her), and thus S[2 1 1] increases its frequency.
Which again brings the frequency of R[1 3 3] up, and so on.

TABLE 6. SENDER’S STRATEGY IN THE SIGNALING
SYSTEMS IN FIGURE 3

M1 M2 M3

S1 1 0 0
S2 0 1 0
S3 0 0 1

TABLE 7. RECEIVER’S STRATEGY IN THE

SIGNALING SYSTEMS IN FIGURE 3

A1 A2 A3

M1 0 0 1
M2 0 1 0
M3 1 0 0
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Sender and receiver populations are thus launched in a cycle of sequential
exploitation, but this is not all that is going on. For example, M1 is,
throughout, never sent in S1. This gives a substrate of more cooperative and
stable communication to the regime of attempted mutual exploitation:
throughout the process, the receiver, when confronted with M1, can rest
assured that S1 is not the case. Apparently, then, these cases should be
understood in terms of a pair of phenomena, one cooperative and one
noncooperative. We outlined the role of exploitation above; here we will
briefly attempt to characterize the second phenomenon, which involves a
subtle form of cooperation. Sender and receiver can be seen as transform-
ing, by means of mixed strategies, one game into another. Suppose that a
sender sendsM1 always in S1, mixesM1 andM2 in S2, and never sendsM1 in
S3. Then when the sender sends M1, she confronts the receiver with an “un-
certainty bundle” that is partly composed of S1 and partly composed of S2.8

The sender can be seen as giving the receiver perfect information about a
bundle, rather than imperfect information about the “raw” state. A receiver,

8. We owe the “bundle” metaphor to Carl Bergstrom and are grateful to both Bergstrom
and Elliott Wagner for suggesting many of the outlines of the analysis given in these
paragraphs. Rohit Parikh used a similar strategy in a treatment of the Crawford-Sobel
model in an unpublished talk at the CUNY Graduate Center, October 2014.

Figure 4. Evolution of frequencies in a persisting cycle for the game in table 4.
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too, can create a bundle. When the receiver mixes A1 and A2, for example, in
response to a given message, the sender is presented with a bundle of acts
that the sender must treat as a unit when determining when to send that
message.
Suppose, then, we revisit the game in table 4 and consider the situation

that obtains when the sender and receiver are following, for example, the
strategies given in tables 8 and 9, which happen halfway through figure 4.
We can redescribe this situation as one in which the senders are being
perfectly informative about three “uncertainty bundles” they have con-
structed. The new “game” is shown in table 10, where SMi stands for the
bundle of states that the sender is presenting with messageMi. Here, sender
and receiver agree on the worst act (the worst “raw” act, not the worst
bundle of acts) possible in each state, and the new value of C is 0.66.
Further, though, we can treat the receivers as creating bundles of acts: they
are offering a new “act,” AM

1, which roughly consists of one-third of A1 and
two-thirds of A2, and withdrawing access to the pure A1 or A2. If we rein-
terpret the game as transformed by both the sender’s and receiver’s bun-
dling, we reach the payoff matrices shown in table 11. This is now a “game”
with complete common interest: both sender and receiver prefer AM

1 in SM1,
and AM

2/3 (the old A3) in the other two state bundles. Because this “game” can
be transformed again by either player changing his or her behaviors, and
hence their bundling, the existence of common interest here does not have
the same role that it has in an underlying game that acts as a fixed constraint.
But we think that this description in terms of bundling may yield some
understanding of how communication can arise in these apparently unlikely
contexts.

TABLE 8. ONE SENDER-RECEIVER CONFIGURATION IN THE CYCLE

REPRESENTED IN FIGURE 4: SENDER’S STRATEGY

S1 S2 S3

M1 0 .44 1
M2 .92 .51 0
M3 .08 .05 0

TABLE 9. ONE SENDER-RECEIVER CONFIGURATION IN THE CYCLE

REPRESENTED IN FIGURE 4: RECEIVER’S STRATEGY

M1 M2 M3

A1 .36 0 0
A2 .64 0 0
A3 0 1 1
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It is more difficult to provide an intuitive description of what it is that
forces senders and receivers into their behavior in the chaotic regimes that
sometimes emerge in the game presented in table 5. A common pattern in
the emergence of signaling systems in these regimes is quasi-periodic
behavior in both sender and receiver, with two similar, but off-sync, “peri-
ods.” For example, from t = 600 to t = 620 in the simulation corresponding
to figure 3, the sender alternates S[2 1 1] with S[1 2 3]. Meanwhile, the
receiver alternates R[3 2 1] with R[1 2 2]. As the sender’s “cycle” is out of
sync with the receiver’s, all four combinations occur: S[2 1 1] and R[3 2 1],
S[1 2 3] and R[3 2 1], S[2 1 1] and R[1 2 2], S[3 2 1] and R[1 2 2]. The
second among these combinations is a signaling system. The other three are
partially informative, thus the 1.58 bits/0.91 bits alternation in figure 3
between t = 600 and t = 620.
In fact, by the time senders and receivers engage in this behavior, the

frequencies of most sender and receiver types is zero; in particular, the
reason why the receiver does not respond to S[1 2 3] with R[2 1 1] is that
this type is extinct by t = 600. The best the receiver can do is engage in
signaling-system behavior, with R[3 2 1]. What we see is sequential
exploitation to the full extent of their current capabilities. In the case we
have been discussing, the difference between frequencies that are very close
to zero and those that are effectively zero (below 2 � 102308; see above)
turns out to be very important: as figure 5 shows, frequencies jump from
extremely close to zero to extremely close to one, and, if we round popu-
lation frequencies so that every type with frequency below 10210 is de-
clared extinct, signaling systems fail to appear.
The above analysis, in any case, only focuses on one particularly legible

fragment of the simulation. Most of what happens in the full run depends on
haphazard details of the population structure, as is bound to happen in
apparently chaotic behavior of this sort, and could not be convincingly
labeled as sequential exploitation. The unpredictable alternation of quasi-

TABLE 11. GAME IN TABLE 4, AS REBUNDLED BY SENDER AND RECEIVER

SM1 SM2 SM3

AM1 40.28, 44.70 31.84, 43.28 33.21, 42.91
AM2/3 38.39, 40.36 33.05, 50.66 34.31, 49.46

TABLE 10. GAME IN TABLE 4, AS REBUNDLED BY THE SENDER

SM1 SM2 SM3

A1 39.58, 47.08 19.94, 38.38 19.08, 40.85
A2 40.67, 43.36 38.52, 46.03 41.15, 44.08
A3 38.39, 40.36 33.04, 50.66 34.31, 49.46

COMMON INTEREST AND SIGNALING GAMES 387



periodic patterns that can be noticed in a longer run is shown in figure 6,
which presents the evolution of the sender-receiver configurations to which
the population structure translates between t = 600 and t = 800.
As we have said, none of the C = 0 runs in our sample in which com-

munication is maintained evolve toward a Nash equilibrium. In fact, in our
sample, the first case in which there is evolution toward a Nash equilibrium
happens at C = 0.22. Somewhat surprisingly, the situation appears to be at fol-
lows. On one side, we have anecdotal evidence to the effect that when a C = 0
game does have a Nash equilibrium in which communication is maintained,
then it is very likely that some initial population frequencies will lead to
persisting communication: in all of the 24 such games we have found in the
random sampling prepared for this and our previous article, the replicator
dynamics will take some initial conditions to a state at t = 1,000 in which
communication does then persist. On the other side, in no case that we have
found is there evolution toward the Nash equilibrium itself.

5. Conclusion. This article describes the results of a dynamic analysis of
the role of common interest in the evolution of communication in a three-

Figure 5. Detail of the evolution of populations corresponding to figure 3, between
t = 600 and t = 620.
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state Lewis signaling game. We find a strong predictive role for common
interest, as measured by C: in a large random sample of games, the pro-
portion of evolutionary simulations in which communication was main-
tained at t = 1,000 was monotonically associated with C. The results pre-
sented here complement those in an earlier article (Godfrey-Smith and
Martínez 2013) that gave a purely static analysis of games of this kind, also
usingC as a measure of common interest. The two sets of results are broadly
consistent and complementary; each approach provides a different per-
spective on these systems.
First, an analysis using Nash equilibria can be used to give a coarse-

grained description of a range of systems that operate under different
dynamical regimes and also cases involving human choice in which no
well-defined “dynamic” may exist at all. The replicator-dynamic model,
however, gives a much finer-grained representation of systems to which it
applies and has been shown to be informative about systems that follow a
somewhat different dynamic, as well (Bendor and Swistak 1998).
Our work here also uncovers phenomena that involve cycling and

apparently chaotic behaviors. We offered an initial analysis of these out-
comes in terms of a combination of sequential exploitation and the trans-
formation of games through “uncertainty bundling,” but this last analysis
was offered briefly, as a first foray; clearly much more work remains to be
done on the interaction between common interest and evolutionary dynamics
in signaling games.

Figure 6. Evolution of sender-receiver configurations corresponding to figure 3, be-
tween t = 600 and t = 800. Color version available as an online enhancement.
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Appendix

Replicator-Mutator Dynamics. In the main text, the evolution of commu-
nication has been shown to depend on C in simulations in which evolution
is governed by the two-population replicator dynamics in continuous time.
A very similar situation is observed if, instead, we let populations evolve
according to the two-population replicator-mutator dynamics. In this alter-
native, the rate of change of the frequency of a certain type depends not just
on how well it does compared to the average in its population but also on a
mutation matrix, M, each member Mij of which gives the probability that an
individual of type i changes its type to j. The differential equations for the
replicator-mutator dynamics are, thus, as follows:

ẋi ¼
P
j
ðxjMjip

j
i Þ2 xipj: ðA1Þ

ẏi ¼
P
j
ðyjMjip

r
i Þ2 yipr: ðA2Þ

In our simulations we have used a mutation matrix according to which types
“breed true” with high probability and mutate equiprobably to every other
type. That is, for a population of 27 pure-strategist types (such as the sender
and receiver populations in our model), M is of the following form (with
m = 0.005):

M ¼

12 m
m

26
: : : m

26
m

26
12 m : : : m

26

⋮ ⋮ . .
.

⋮
m

26

m

26
: : : 12 m

0
BBBBBBBB@

1
CCCCCCCCA
:

Again here, the proportion of simulations that show evolution to commu-
nication increase monotonically and smoothly with C (see fig. A1).
One important difference between the replicator and replicator-mutator

results is that, in the latter, no simulation in the C = 0 group presents
evolution to communication. It should be noted, though, thatM is such that
everything mutates to everything else; the net effect of this mutation is the
introduction of a certain amount of “noise” that, among other things, pre-
vents type frequencies from dropping belowm/26. Whether communication
at C = 0 would be possible in the presence of a more structured mutation
matrix remains to be seen.
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Other Implementation Details. We have implemented our simulations in
custom scripts relying on the Python scientific stack: Python 3.4.2, NumPy
1.9.1, and SciPy 0.15.1. The systems of ordinary differential equations were
solved using the scipy.integrate.odeint solver, which, in its turn, calls the
LSODA solver of the ODEPACK library (see http://www.netlib.org/odepack
/opkd-sum for details).Whenever this solver failed, our scripts fell back to the
implementation of the Dormand-Prince method (Dormand and Prince 1980)
provided by scipy.integrate.ode. Figures were prepared with matplotlib 1.4.3.
Our scripts are published under the GPL license at https://github.com/manolo
martinez/signal. The random sampling of population starting points followed
the 27-dimensional flat Dirichlet distribution, calculated using the NumPy
implementation available in numpy.random.dirichlet().
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